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§1 Bckground

Theoretical neuroscience involves a growing list of mathematical tools and objects, and
among them probability is an important player that appears widely. First, and perhaps
most commonly, it appears in theoretical models as “noise” to mimic inherent random-
ness observed in neural recordings. One can then ask questions such as: what is the
nature and source of this noise? and, how do neurons and neural population adapt to
and function in face of such noise? Secondly, they are involved in stylized problems of
neural learning where one would like to understand how various plasticity mechanisms
can be used to learn by population of neurons when provided with stochastic learning
data and/or stochastic learning rule. Thridly, random variables are commonly used to
model synaptic weight strengths to explain observed neural dynamics in the brain and
to model how such dynamics can perform computations. Fourthly, randomness is used
instrumentally in models of computations, memories or dynamics to get an analytical
handle on their properties and includes the large class of statistical (mean) field theories
deployed in neuroscience. Here, we will be concerned with a slightly different use of
randomness: modeling neuronal representations of external variables as random code
generated by neural population and their statistical properties. In particular, we will be
concerned with continuous external variable (such as space) represented by a particular
continuous stochastic process: Gaussian process [1].

But before, we briefly recall discrete Gaussian random variables and give definition for
a Gaussian process.

§1.1 Discrete Gaussian variable

Definition

A real valued random variable £ is said to be Gaussian if it has the density function

o) =~z o (") )

for some m € R and o > 0.

Similarly, a vector £ = (&1, ..., &) of p random variables is said to have a p-variate
Gaussian (normal) distribution if every linear combination of its components a- & =
> ax€r has a normal distribution. The variables &1, ..., &, are said to be jointly
Gaussian with mean vector m = (£) and non-negative definite p x p covariance
matrix

5= 08 = (€ -m) (- m)

If the determinant of 3 is positive, the distribution of £ is non-singular and has a

density
1 1 =1l /
— = o px-m)¥(x-—m) . 2
?(x) (2m)P/2v/det 5 @)
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§1.1.1 Conditional Gaussian

The multivariate Gaussian distribution has the useful property that conditional on ob-
servations of a subset of variables, the unobserved variables are also Gaussians with
the conditional expectation as a linear combination of the observations and variances
and covariances that are independent of the observed values. Let & = (&1,...,&,) and
n=(m,-..,Nm) be two jointly Gaussian vectors with means:

<£> = meg, (77> = My,

and with covariance matrix:

X =C((&m); (& m) = < gié gf:; ) '

Theorem 1.1 (Gaussian Conditioning)

The conditional distribution of £ given np = y is Gaussian with conditional mean
matrix

Eln=y)=E@y) =€ +CEMS y — )" ‘)
=mg + 25772;,% (y — m,,)T .

The conditional covariance is

Seem = (((€ - 8m)T(€ — €M) ) = See — Ten Tyt e (4)

§1.2 Gaussian process

Definition 1.2

A stochastic process { f(z),z € R} is a Gaussian process if every linear combination
S =) arf (zy) for real a; and z;, € R has a Gaussian distribution.

Equivalently, f(z) is a Gaussian process if for every finite discrete k points it’s
evaluated at (f(x1),---, f(zx)) are distributed as multivariate Gaussians.

Similar to how multivariate Gaussian is defined using one index mean vector and two
index covariance matrix, Gaussian process is defined using a one-variable mean function
When we went from univariate to multivariate Gaussian we went from single index vari-
able f to finite discrete indexed variable f = (f1,..., fr). Gaussian process generalize
this process further and move to a continuous indexed random variable f(x), which is
then a function over the index R.

and two-variable covariance function

r(z,y) = ((f(z) —m(z)) (f(y) —m(y))) -
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§1.3 Origins of random code

Consider a population ¢ = 1... N of spatially selective neurons presynpatic to a CAl
place cell with bounded spatial response function u;(x) for = € [0, L]. We consider first,
for simplicity, a scenario in which all input neurons have the same tuning curve up to
translation, with preferred firing locations z; that uniformly and densely tiles the space:

ul(m’) = UO((E — a:l)

The input to the CA1 cell, f(z) is a weighted sum of presynpatic activity:

N
fl@) = Wiu(x),
i=1

where we assume that the weights W; are drawn independently from a distribution with
zero mean, and a finite second moment. Using the central limit theorem for multidi-
mensional stimuli |2, [3], we get that for any discrete set of locations zy, f(x;) are jointly
distributed as multivariate normal in the large N limit. Hence, f(z) is a Gaussian pro-
cess in this limit. The covariance function of the Gaussian process must be transitionally
invariant, due to our assumption of uniform tiling of inputs in the input layer. Indeed,

N N
(f(x)f(y)) = Z (Wi W;) ui(x)u;(y) = Var (w) Zuz(x)ul(y)
=1 i=1
zvar(U})P/L‘UO(w)UO(H?-FAx) de; p= %
Assume for simplicity: Var(w) = %

=r(y—z)=r(Ax)
In particular, r(0) = rg is the variance of the process.

Example

Suppose individual tuning curves are shaped as Gaussian firing fields, r(Az) is a
Gaussian with a width equal to twice the width of the individual firing fields.

("L'*Cj 2

1 N2 _\2
ui(z) = Re™ 202 = r(Ax)%RQ/D de; exp <_<33 ¢) +2(y ¢j) )

20

2
~ R%Vro? exp (_A:z)
402
In our model, the underlying index = € [0, L] is provided by the environment and rep-
resents the location of the animal. The Gaussian process, then, represents the sub-
threshold activity of a cell in CA1l in hippocampus and is composed to sum of many
synaptic activation at each point in the space, which can correspond to a Gaussian pro-
cess in limit of large input. These subthreshold activation are filtered through cellular
thresholding (and possibly incident inhibitory input to the cell) and when it crosses
a threshold 6,/r¢ (thresholds should be in the order of variance of the process to be
meaningful) resulting in place fields of the neurons.



Janelia 2024 Nischal Mainali

§2 Structure of excursion of GP

In our setting, the inputs to a neuron is a sample from a Gaussian process. This input
is then processed by the neuron to generate neural (firing rate) activity. This can be a
highly non-linear process but always involves some sort of thresholding operation:

©(h) = max (0, f — 6+/r0)

This gives rise to “excursion sets” of the process when it is above such threshold, which
are region of non-zero firing rates in the backdrop of zero activity. Notice that various
features of these excursion sets either don’t depend on further non-linearity such as
number or sizes of the excursion sets or depends on it in a trivial way such as height and
derivatives. With this, the simplest question one can begin to ask is how many excursion
sets we might get in in the space of size L. This is, of course, a random variable, but
a famous formula found by Kac and Rice (Kac-Rice formula) tells us how to count the
expected number of threshold crossing event of a stochastic process.

§2.1 Kac-Rice formula

First, we will state and show the counting formula, proved by Kac and Rice|4}, 5], which is
true for any functions or process under mild regularity conditions (C! functions). Then,
we will apply it to Gaussian process to find the expected number of excursion sets.

Theorem 2.1 (Kac-Rice formula)

For every C! function f : R — R, that is compact on [a, b], and has no double roots,
the number of threshold crossings N¢(T") at the threshold T is given by
b
Ni(T) =1lim [ n(f(z)=T)|f'(z)|dz (5)

=0 /,

where 1
(g) = —1 .
ne(9) = 5 1{lgl <€}

Firthermore, in the limit ¢ — 0:

where 0(.) is the delta function.



Janelia 2024 Nischal Mainali

Proof. As € — 0, the number of intervals such that {x € [a,b] | |f(z) —T| < €}
is a union of intervals around the threshold crossings, and we choose a particular
interval around a threshold crossing [c, d], then:

b

Ny(T) = lim [ ne(f(@) = T)|f'(2)] da

1 d
_ 26/ 1£(@)| de

/Cdf’(x) dz

1
= 2—] f(d) — f(c¢)] by fundamental theorem of calculus:
€

Without double roots:

1
2e
= 12 =}

So, we find that summing the integral across the space gives a count for the number
of threshold crossings of the process. O

§2.1.1 Expected number of threshold crossing

To find the expected number of threshold crossing events, we want to calculate:

57 0y = { [ 560 - ovm @)z ) = [ (507 -0 |7/ da

The expectation in over two variables (f(z), f'(z)), which are both Gaussians and jointly
distributed. In our case, f has zero mean, and due to constant mean of the process, f’
also has zero mean. So, it comes down to calculating the covariance matrix of the two
variables to understand their joint distribution. To that end, by virtue of stationarity,
note that:

/ / 0 0 92 .
2, <f(m)f(x)>:< J;;y) ) J;(yy) >:W )
_ %r(Ax) | 9AzdAz
© 0AxdAx|,_, Ox Oy
_ 827“(A.I‘) 0 (y — 1-) o (y _ .%‘)
(9A.%'2 Az=0 ox 82/
= —r"(0) = —rg

Together, we can write the joint distribution of (f(z), f/'(z)) as:

(50) () (5 )
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This leads to two observations: first, the expectation is independent of the exact value of
x and second, the the process and it’s derivative are independent at any given location.
Both of these are blessings of stationarity. With this, we can first write:

Ny (6y) = (3 (@) = 0 | @)]) [ ao
= L-P[f(z) = 0/ro] - (| f'(=)])

L 62 2r(
= ex .
\V 271'7“0 P

The density of excursion sets then is one-half the number of threshold crossings divided
by the volume of the space:

T r! 2
#(9\/7“70) = ;W = ;r\/%exp [—02} (7)

With this we can immediately approximate the mean size of the excursion sets and mean
gaps between them. To that end, note that the process spend L (1 — qb(H\/ro)), so the
mean size s and mean gap 5 can be found as:

o L (1 —L¢<z\/%)) =27 (1 — ¢(6+/T0) exp [922] —% (8)
0

i 62 T

S = 277(;5(0\/770> exp |:2:| _76/ <9)

Note that for high threshold, the gap between the excursion is much larger than the size
of the excursion set, and in particular, the correlation between such consecutive sets will
have decayed close to zero resulting in a Poisson character of the crossings, whose mean
is given above, thus full characterizing the distribution.
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§2.2 Bochner theorem and spectral density

Theorem 2.2 (Bochner's theorem)

A continuous function r(x), real or complex, is non-negative definite, and hence a
covariance function, if and only if there exists a non-decreasing, right continuous,
and bounded real function p(w), such that

r(Az) = /OO AT dp(w) (10)

—0o0

In particular, p(w) has all the properties of measure (after normalization) and is
called the spectral density of the process. Then, the k™ derivative of a stationary
process {f(x),z € R} when exists has the covariance function

o
T (Az) = (—1)kr§c2k)(Aa:) = / w2 WAT 4 p(w) (11)
—0o0
If spectrum is continuous, the spectral density is
pioo (W) = wps(w). (12)
In particular it implies:
oo oo
ro = / do(w)=wo ; -rj= / w?dp(w) = wy
—0oQ —0o0

Meaning, we can rewrite the Kac-Rice formula as:

1 §2 1 021 | [Tow?dp(w) 1 0°] [w2
0 = — == = - — -
#(0v/ro) QWeXp[ 2] - 27reXp[ 2} p[ }

= dpw) 2w

The mean-crossing rate can be found as

R (19

which has units that are inverse of the space and can be thought of as the inverse of the
correlation length of the process.

If we repeat the same calculation for the derivative process we will find that the density
of maxima and minima of the process as:

1 W4 h /oo 4d ( ) (15)
= U = — — whnere, wqg = w w
Hy = [ o7\ wy' , Wq . P

which, when combined with mean-crossing gives the average number of local maxima
per mean level crossing,

1
spVwa/w2 _ [oows

1 = p)
5/ Wa/wo w3

/o=

(16)

The parameter « is invariant under time and scale changes. It is bounded by 0 < a < 1,
and it can be used as an irregularity measure: an « near 1 indicates a very regular process
with approximately one local maximum and minimum between mean level upcrossings.
If «v is near zero the process contains many high frequency component.



Janelia 2024 Nischal Mainali

§2.3 Structure of the excursion sets
§2.3.1 Threshold derivative

In the study of phenomenology of the Gaussian process, we’d ideally like to go beyond
counting excursion sets and try to understand something about the process during the ex-
cursion. One approach is to look closely at the process at and near the threshold crossing
and generalize the Kac-Rice method to try and gather information about the process in
the vicinity of the threshold crossing. More precisely, extension of Kac-Rice based ideas
have resulted in in what’s called Palm conditioning techniques, simplest of which involves
the distribution of the derivatives. The idea is as follows: from the Kac-Rice approach we
have already counted all the cases in which the the process crosses a threshold irrespective
of the derivative. Now, we will focus on upward crossings, and try to count the upward
crossing in which the derivative was restricted as #{f(z) = 6\/r0 and 0 < f'(z) < v}.
Then, we can find cumulative density function of the derivative at the threshold crossing
15].

Theorem 2.3

Derivatives of a stationary Gaussian process at it’s up-corssings are distributed as
Rayleigh random variable

/ 12
Py s (f') = —exp <—2fu)2> , (17)

and is independent of the threshold.

Proof.

_ / _ #{f(x)=0/rg and 0 < f'(z) < v}
P [f(x) = 0y/r0, f'(z) <v] = e

_ o0 (@) = 0ym) /() | 0 < f'(x) <w)dz
[, (8(f(x) = 6\/r0) f'(z) | 0 < f'(w)) da

| L-P[f@) = 0ym) iy £ exp (— =) af”

LeP[f(@) =0y 52 fexp (42 ) df

CLrea(-&)ar e (-4)dr
i reo (~f2)ap VI x VR

2w
v gl 12
= i exp <— f) df’
0 W2 2(,02

O]

But before moving on, let’s recall that f and f’ are both Gaussian random variable, and
furthermore are independent of each other in our case. Then perhaps one would assume
that there is nothing to be done since f’ will simply be a Gaussian centered at 0. But
this is not quite right. This would be true if we were measuring the slope distribution
deterministically, but instead we are only measuring it in location determined by the
process itself, which biases the sampling and results in a different distribution.
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§2.3.2 Slepian process

With that, we have all the ingredient we need in order to look more closely into the
excursion sets. The idea was firs proposed by Slepian who constructed a model for
Gaussian process after crossing a threshold, i.e, a model for the individual excursion
after the threshold crossing. It makes use of the fact that at the upward crossing the
derivative of the process is distributed as a Ryeligh distributed.

It is also somewhat annoying to constantly write 6,/7g , so without loss of generality, we
will simply write 6 hereon.

Definition 2.4 (Slepian model)

Let {f(z),z € R} be a stationary stochastic process and fix a level u, such that f(x)
has a finite number of upcrossings in any finite interval. A Slepian model process
for {f(z),x € R} after any f—upcrossings is any stochastic process {{y(z),z € R}
whose finite-dimensional distributions are given by

P (§u(z) <v) = /OOO Py(2)P (f(z) < v | £(0) =0, f(0) = 2) dz, (18)

where P, is the Rayleigh density.

In the case of a Gaussian process, the conditional distribution of f(x) given f(0) = u
and f'(0) = z is still a Gaussian variable, so we simply need the first two moment
function to completely characterize the excursion process: (f(z) | f(0) = u, f’(0) = z)

and (f(z)f(y) | f(0) =u, f'(0) = 2).

We take & = (f(y), f(z)),n = (f(0), f/(0)), and calculate the joint covariance matrix of
(&,n) from the covariance function r(z) for {f(z),x € R}. Note that all the relevant
means are 0.

We have four variables, and we have previously identified the covariance between all the
pairs except one: (f(z)f’(y)). To that end, using Bochner’s theorem, we get:

U@ﬂwz/mmwywmwm;y>x
Differentiating w.r.t x :
(£(@)fW) = [ ~iwexpliw (v - o)) dp(w)
= —1r'(Ax)

Resulting in the following covariance matrix:

2,
| r(-Az r(0 r(z) —r'(x Yee X
== o) 0 (=% 59):
0 —r"(0)

Together we have:

10
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r(0)  r(Az) |r(y) —r'(y)
£> I <0> r(=Az) r(0) |r(x) —r'(x)
~ , 19
(5 o) | T @ [r0) 0 (1)
) @] 0 —1"(0)
With wy = rg,ws = —r(] we get the conditional expectation and covariance matrix given
n=(0,z) as
/
o gt (00— 2 () e
<£ ’ 77 Y> 5"7 'r,ny < ’I"(.’E /WO — a7 ( )/WZ
T y y) ey, )
Seei = See — Deny, S = re(z,y) relz,z) ) :
where,

e (02) — (A - ") @)@,

wo w2

This is a covariance structure and it can be used as the covariance function for a non-
stationary Gaussian process, where the last two terms are due to conditional induced
reduction in covariance. When x or y tend to infinity, the reduction terms go to 0.
Similarly 0r(z)/wo — zr'(z)/wy is the (random) mean value function. Together, this
results in the following theorem:

Theorem 2.5

The Slepian model for a Gaussian process {f(z),z € R} after upcrossings has the
form

Or(z) (r'(x)

wo w2

§o(x) = + k(z), (20)

where ¢ has the Rayleigh density p“(z) = (z/w2) e=#/22 7 > 0, and the residual
process {k(x),x € R} is a non-stationary Gaussian process, independent of ¢, with
mean zero and covariance function ry (z,y).

§2.3.3 High excursion

To further study the structure of the excursion set, we will limit our-self to high threshold
regime, where we can hope to progress by expanding the Slepian model £y (x) in a Taylor
series as § — oo. It will turn out that the length and height of the excursion will both
be of the order §~1, so we normalize the scales of & (x) by that factor. First, we have
simply
2
r(x/0) = wo — wg%(l +0o(1)), 7'(x/0) = —wa2y (1 +0(1))

as /60 — 0. Further, it is easy to see from the covariance function r,, (z,y) that x(z/0) =
o(z/0), and we get, omitting all o-terms, and with ¢ as the Rayleigh slope variable,

11
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0 {€s(2/0) — 6} _9{9 (Wq) —CW+/@($/9)} (21)

2 2 2
o — 2 :_“’2(:6_5“’0) L S0 (22)
w9 2&)2

Thus, the excursion above a high level 6 takes the approximate form of a parabola with

height g;zg and length 25‘:?;. So, the excursion size is distributed as a Rayleigh random
variable and the excursion height is distributed as square of Rayleigh distribution. In
dimension D higher than 1, in case of isotropic process, the D major lengths of the
excursion sets will all be approximately distributed as Rayleigh to the power D.

Denote S as the size of the excursion set. Then S is a Rayleigh random variable with
PDF Pg(s) = - exp (—%) We want to find the distribution of V' = S”. Using the
Jacobian correction, we compute the PDF of V' as follows:

s

P(v) = Ps(s) | 7

In particular, when D = 2, we get both the size height distribution of the excursion set
as an exponential distribution.

12
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§3 Coding properties

So far, we have looked at the structural and phenomenological properties of Gaussian
process in the context of neural code. But now, we will shift to a more functional
point of view. Neurons create a representation of the external world which can be read
out by other brain areas to query about the information. For example, CAl cells in
hippocampus are widely read out by neurons spread through the brain, and at their
simplest, they code for the spatial location of the environment. We have shown that
such a code is statistically a threshold crossing of Gaussian process over the space. But
what might be the coding properties and benefits of such a code? To answer this we
will follow ref [6] in a simplified setting without the threshold and formulate a coding
problems in terms of maximum likelihood readout in presence of noise.

Consider a population of N CA1l neurons coding for 1D space of length L. Each neurons
generates it’s code based on independent samples from a stationary Gaussian process
f= (fi(z),..., fn(x)) with covariance function 7(Az). Suppose that the neural repre-
sentation is further corrupted by an additive Gaussian noise z; ~ A(0,7?), so that the
activity readout at say x = 0 of neuron i is f;(0) + z;. Then, we formulate the readout
problem as the maximum likelihood estimation of the location = given by &, which in
the case of Gaussian noise minimized the mean square error:

&= argmmz fil@) = (f(0) + z))? (23)

With this, we’d like to characterize the codding efficiency of the code using a loss func-
tion, which we simply take to be the mean squared loss function (we can be broad about
it and select other kinds of loss functions without too much overhead!). That is, we’'d

like to calculate:
L= <(§; . :c)2> (24)

To that end, we note that we have two separate causes for error in our coding scheme.
First, is a local error that occurs due to the resolution imposed by the noise in the code,
this occurs when the Bayesian posterior of the estimation has one peak around the true
value x. Second, there cal be a global error, where due to the noise, the code at one
point the space ends up being “closer” to an entirely different point in the space, and in
such cases, we expect more than one peak in the posterior. These two source of error will
have to be dealt with separately, and we will start with the one that is more common in
computational neuroscience, is easier to handle, and can be done exactly.

§3.1 Local error

Suppose that the error is small Az such that & = Az. Then,

3= argmlnz fi(z) = (f:(0) + z)]?

_argmlnz fi(0 (0)Az — (f:(0 )+Zi)]2

13
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Differentiating w.r.t Az, we get:

N N !

N F10)2
Zfi'(O) [f{(0)Az — 2] =0 = Az = 22;17‘]0’,()2;
i=1 >i=1 £i(0)

So, we can get expected local error by first taking expectation over the noise:
25N 2 2
N £100
<£Local>z — <(A$)2> — n szl fz( ) _ Ui O

(
w2

C(SNn02) wxih?

/ 2
To avoid long integral, note that El]\i 1 % is a Chi-square distribution with degree of
freedom N, and the mean of the inverse chi-square distribution of degree of freedom N

is N — 2, resulting in:

2

n
<£Local> = m (25)

§3.2 Global error

We will limit ourselves to the case where Global error are rare and thus the place where
they can occur are far apart. This will take us to a regime where the numbers of global
error can is distributed as a Poisson distribution. Let A be the rate at which the global
errors occur. Then, the probability that there will be any global error is:

P(Global error) = 1 —exp(—AL) =~ AL

So, we need to estimate A in order to get a handle on the global error. Global errors occur
when the distance between the true location and the noisy code ||f(0) — £(0) + z|| = ||z|
is larger than the distance between the code at some arbitrary point x (further away
than it’s correlation length) and the noisy code ||f(z) — £(0) + z||, i.e

1£(z) — £(0) +2* < ||z]*

Define f = ||f(z) — £(0)|| and observe that the inequality boils down to:

I:Hﬂ‘z—2f-z<0

Here, we run into an issue, which is that, if there is a point at which a global error
occurs, the error can occur in points that are close to it as well and we run risk of
inflating the global error. So, for our purposes here, we will make a simplification which
can be understood in either of the two ways: taking the correlation length of the process
to be close to 0, or segmenting the process in sizes proportional to the correlation length,
such that the segments are essentially independent.

We will proceed in two steps: first averaging over the noise, followed by averaging over
the process. Keeping the value of f fixed, we note that Z is conditionally distributed as

v (17

2 2
,4772“]?” ) Now, notice that we are interested in the situation when Z < 0,

14
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so dividing by a positive constant, such as Hﬂ‘ will not change the probability of such

,4772)-

an event and instead give us an updated 7= ﬁ which is distributed as N (H

Then, we can write the probability of global error as:

~ 2
]P(I<0):/_(; L _(I_&Uﬂ‘)

87

3

:/0 V20 exp | —2rg
—co /81?2 8n?

2

ofe- 1)
0 To .
R T

With this, we are left with the final task of averaging over the randomness from the
il
\V2ro

distributed as a non-central chi square distribution with degrees of freedom N and non-
centrality 7. So, we can take the expectation of the exponential terms in terms of the
non-central chi square distribution (again, to avoid an integral), noting that it has the
form of a Moment generating function with t = —-%:

5 1Al

2
)
2 >

f .
process which only appears through ﬂ% in our case, and the term (Z — is

oy

exp < +4 4 _
z

= C A [ — <1 + TO)

(1+33) )

Putting it together, we get:

1 7 -
P (Z < 0) 1/ 1+/ exp | ————— <1+T°2>
o0 QW 2(1+2L> 2

=

M\Z

15
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So, all in all, we get the probability of global error, noting that we have effectively space
of size Lwo since we divide the space into independent parts:

L ==
P(Global error) = ALws = % <1 + 7”0)

Finally, the size of the global error is I2, where [ is a uniform random variable over the
space [0, L]. So, the expected magnitude of the error is %LQ. So, we get:

1 ng r T2
(Laobal) = EL2IP(GlObaI error) = 242 <1 + 21;]2>

Adn the total expected error combined with the local error is:

2 3 _
<£> = (ELocal> + <£Globa1> = LUQ(N — 2) -+ Y (1 —+ 2>

Note the different role wo plays here (and we can calculate the optimal wy by minimizing
the total error)|6]. Also note the exponential suppression of error in the number of
neurons.
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